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‘Best’ solutions for the shock-structure problem are obtained by solving the 
Boltzmann equation for a rigid sphere gas by applying minimum error criteria 
on the Mott-Smith ansatz. The use of two such criteria minimizing respectively 
the local and total errors, as well as independent computations of the remaining 
error, establish the high accuracy of the solutions, although it is shown that the 
Mott-Smith distribution is not an exact solution of the Boltzmann equation even 
at  infinite Mach number. The minimum local error method is found to be par- 
ticularly simple and efficient. Adopting the present solutions as the standard of 
comparison, it is found that the widely used vE-moment solutions can be as much 
as a third in error, but that results based on Rosen’s method provide good 
approximations. Finally, it is shown that ifthe Maxwell mean free path on the hot 
side of the shock is chosen as the scaling length, the value of the density-slope 
shock thickness is relatively insensitive to the intermolecular potential. A com- 
parison is made on this basis of present results with experiment, and very satis- 
factory quantitative agreement is obtained. 

1. Introduction 
Recent studies of a model Boltzmann equation (Liepmann, Narasimha & 

Chahine 1962; Narasimha 1968) have provided some insight into the structure of 
a shock wave in a simple monatomic gas as described by kinetic theory, but the 
complexity of the true Boltzmann equation has till now precluded the calculation 
of reliable quantitative estimates for the shock thickness. An exact solution, 
even on a computer, has not yet proved possible, although Bird (1967) and 
Nordsieck & Hicks (1967) have recently reported some very interesting numerical 
experiments. Many approximate methods have been proposed and estimates of 
the shock thickness abound in the literature. However, there are considerable 
differences among these results, and as there is no completely rational theoretical 
basis for preferring one of these estimates over the rest, the problem is still 
essentially open. 

Most of the approximate methods used so far are direct or indirect develop- 
ments of a pioneering contribution of Mott-Smith (1951). They usually retain 
his ansatz for the distribution function containing one space-dependent free 
parameter, but differ in the methods used for the evaluation of this parameter. 
The technique employed by Mott-Smith himself was to require that a suitable 
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moment of the error or residual be zero; it has been shown by Gustafson (1960) 
and Narasimha (1966) that  the method of Rosen (1954) belongs to the same class. 
The choice of the ‘moment function’ H used in these methods is to a great extent 
arbitrary, and, as Rode & Tanenbaum (1967) have recently highlightcd, the 
results show an unfortunately strong dependence on the choice. This fact, 
coupled with uncertainties in our knowledge of the exact intermolecular potential 
for any given gas, suggests that  agreement, between experiment and the rcsults 
of one of the approximate methods is not a sufficient indication of success. 

This variability in the results from the moment methods has occasionally 
prompted the view that what is required is a better basic ansatz for the distribu- 
tion. On the other hand, a result of Sakurai (1957) has often been quoted in 
defence of the Mott-Smith (or bimodal) ansatz: namely that for an infinitely 
strong shock, the ansatz represents an exact solution of the Boltzmann equation. 
There are, however, two limitations to  this result. First, it is not uniformly valid 
in molecular velocity space, and there is no obvious reason why the regions in 
which it is not valid can be ignored. Secondly, the result rests on the shock thick- 
ness taking on a certain limiting value: this appears as a postulate rather than 
a consequence. Oberai (1967) has recently shed some light on this question by 
proving the interesting result that  the value assumed is the best in a least squares 
sense for the ansatz. We will be able to show here that the ansatz in fact does not 
represent the exact solution. 

Apart from its attractive simplicity there are a few other reasons for not 
abandoning the Mott-Smith ansatz in haste. The exact solutions of the BGK 
model equation obtained by Chahine & Narasimha (1965) suggest that the true 
distribution does resemble the form proposed by Mott-Smith although a detailed 
asymptotic study (Narasimha 1968) shows that it is unlikely to be an exact 
solution (at least not for all inter-molecular potentials of interest). Bird’s (1967) 
Monte-Carlo calculations also support this belief. Finally, Ananthasayanam & 
Narasimha (1968) have shown, again for the model, that  the bimodal ansatz can 
give reliable estimates of the density-slope shock thickness provided suitable 
criteria are employed. 

The main object of this paper is to present and discuss results for shock thick- 
ness using certain minimum error criteria. Although it may generally be conceded 
that such criteria are more rational than moment methods, they are not free from 
a certain arbitrariness either, as the definition of the ‘error’ is not unique. How 
ever, we show here that by investigating the consequences of adopting two such 
criteria, which we shall call minimization of local and total error respectively (0 2), 
we can get a fairly good idea of the accuracy of the final solutions. 

The application of minimum error methods to the Boltzmann equation would 
seem to involve great difficulties in practice (Oberai 1967), but with the know- 
ledge that the collision integrals for the Mott-Smith ansatz can be calculated 
explicitly in closed form (Deshpande & Narasimha 1969) these difficulties become 
much less severe. Furthermore, we shall find here (0 3) that the minimum ‘local’ 
error criterion is not only successful in terms of accuracy but is quite simple to  
apply, and in fact gives results in closed form (although they will be found to be 
rather complicated). A critical comparison of these results with those obtained 
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by other approximate methods ( 8  4) provides an interesting assessment of the 
latter. 

The calculations mentioned above are all strictly valid only for rigid-sphere 
molecules. However, we show in § 5 that they have much wider relevance em- 
bracing more general intermolecular potentials, provided the density-slope shock 
thickness is scaled with the Maxwell mean free path on the hot side of the shock, 
The adoption of an equivalent scaling has previously been found useful by 
Lighthill (1956) for estimating the Navier-Stokes shock thickness, and by 
Ananthasayanam & Narasimha (1968) for the BGK model. It suppresses to 
a great extent the importance of the intermolecular potential, and so a compari- 
son of present results with experiments becomes meaningful. In  fact, the com- 
parison turns out to be very satisfactory. 

2. Description of minimum error methods 
For the one-dimensional problem of the flow through a plane shock layer 

(figure I), we write the Boltzmann equation in a shock-fixed co-ordinate system as 

vx(a/ax)f(v; 4 = $(f,f), (2.1) 
where f is the distribution function and v the molecular velocity vector with 
a. component vx along the direction of the mean flow. $( f, f) represents the col- 

Cold side 
fll, % 81 
f =  Fl 5 

/ /4 
FIGURE 1. Co-ordinate system for shock. 

lision integrals; the notation follows that of Deshpande & Narasimha (1969) 
(referred to as I in the following). Boundary conditions on f are 

f(v; -00) = PI(V), f(v; +W) = Go), ( 2 . 2 )  
where F represents the equilibrium Maxwellian distribution, and subscripts 1 
and 2 refer to the far upstream and downstream sides of the shock, the para- 
meters in P being related through the Rankine-Hugoniot conditions. We shall 
often use the mean free path on the hot side of the shock, 

as the basic length scale in the problem. The reason for preferring this to the 
more usual choice of the cold side mean free path will become apparent later 
(see $ 5 ) .  

1 = (24nn2v2)-1, (2.3) 
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As in most approximate methods for solving (2.1) ,we adopt the simple bimodal 
ansatz for f and write 

f O ( Y  4 = (1 - V(.,}Fl(V) + v ( 4  F2W’ (2.4) 
where v(x)  is a function to be determined; from (2.2), v( - 00) = 0 and v( + 00) = 1. 
As (2.4) will not in general solve (2.1) exactly, we define a residual or error e as 

e ( v ;  4 = %(afo/w - $ ( f o , f o )  
= V Z ( 4  - Fl) (dv/dx) - 4 1  - v )  ($12 + $21). ( 2 . 5 4  

We further define ‘local’ and ‘total’ errors as 

respectively, the integrations being carried out in each case over the whole 
range of the relevant variable. Substituting ( 2 . 5 ~ )  into (2.5b), we can write 

E = XV’2 - 2 Yv( 1 - v )  v‘ + Z V 2 (  1 - v)2, (2.6) 
where v’ = dv/dx and 

x = v:(F2-Fl)2Dv, s 

It proves to be of interest to consider two alternative criteria for determining 
the ‘best’ v‘. The first is to minimize the local error, i.e. put 8Elav‘ = 0; this gives 

v’ = ( Y / X )  v(1- v) .  (2.8) 

The second is to minimize the total error E ;  the function v(x) that does this can 
be obtained as a solution of the Euler equation associated with the variational 
problem SE = 0. Using the boundary conditions on v, the governing equation is 
easily found to be 

In either case the solution for v is the well-known hyperbolic tangent, 
(2.9) 

(2.10) 

v’ = (Z/X)i: v( 1 - v) .  

v(x) = g(l+ tanh (2x/S)}, 

where (2.11) 

is the usual maximum density-slope shock thickness. Using subscripts L and T 
to denote values obtained by minimizing local and total error respectively, we 
find from (2.8) and (2.9) 

8, = 4 ( X / Y ) ,  ST = 4(X/Z)*, ( 2 . 1 2 ~ )  
8; - 8; = 16(X/ Y 2 Z )  (XZ - Y’). (2.12b) 

Now the discriminant XZ- Y 2  of the error quadratic (2.6) is proportional to the 
minimum value of i? and hence is a measure of the ‘distance’ between the 
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approximate and exact solutions. From (2.12b), we therefore see that the close- 
ness of 8, to 8, is a good indication of the accuracy of either solution (at least as 
long as the factor X /  Y2Z remains nonzero). 

3. The error coefficients 
Among the three quantities X, Y ,  and 2 appearing in (2.6) X is easily found 

as it involves standard integrals commonly encountered in kinetic theory. We 

x = E( - )i+i x,, (i,j = 1,2) ( 3 . 1 ~ )  may write 

where X i j  = v$l$(v) q (v )  Dv 
i, i s 

= &nini(P{Pj/n)' (Pi +Pi)-' 
x {Pi + Pj + 2 (Pi U.i + Pj uj)z} exp { - PiPj (U ,  - U J 2 /  (Pi + Pj)>* (3.1 b )  

In the following sections, we consider the coefficients Y and 2. 

3.1. Evaluation of Y 
Prom (2.7), it is seen that Y represents a moment of the collision integrals, and 
so can be looked upon as a rather complicated effective cross-section of the 
molecule. By a well known lemma about such moments (e.g. Chapman & Cowling 
1960, 0 3.5) we have relations of the type 

where the notation is the same as in I and H ( v )  is any function of the velocity 
vector v. Using (3.2) in (2.7), Y can be written as 

= ( - ) i n i n i n k ( P i P j P k / n 3 ) ~  ( y i j k -  Y @ k ) ,  (3.3) 

where the summation is over all (i,j, k) = (1,2),  

YZjk = J v, exp { - pi (v - Ui)2 - pj (v - Ui)  2 - Pk( w - UJZ} gb db de DVDW, 

(3.44 

Y i jk  = vj, exp { - pi(v' - ui)2 -p,(v - uj)2 -pk(w - uk)2)gbdbdsDvDw. 

(3.4b) 
Prom the symmetry in (3.4u), and from the vanishing of the collision integrals 
J?(G, 4) in (3.2) when i = j ,  we havet 

s 
Y,jk = q ' i k ,  Y;jj = qjj. 

Therefore only four integrals of the type (3.4) contribute to Y .  
All these integrals can be evaluated analytically; the procedure is rather 

laborious, but the main idea is to use g as one of the two independent velocity 
variables, choose the other one so that the exponentials in (3.4) take on a simple 

t We are not using the summation convention in this paper. 
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form, and integrate with respect to  the new variables instead of v and w. A par- 
ticularly convenient way of achieving this is to  use a set of transformations 
employed by Suchy (1963) in a study of certain cross-section integrals. The new 
variables are defined by the relations 

and the exponentials take the simple form shown in (3.8) below. Substituting 
from (3.5) and (3.6) into ( 3 . 4 ~ )  and completing the trivial integrations in b and e 
we can write 

where 

subscript x denotes the component on an axis along vx, and Il and I2 are integrals 

Il (U) = Gexp{- V 2 - ( G - U ) 2 } D V D G ,  ( 3 . 8 ~ )  

(G - U ) 2 }  DV DG. (3.8b) 

defined by 

Il(U) = GGzexp{- V- 

These integrals can be evaluated in closed form in terms of certain confluent 
hypergeometric functions as shown in appendix A, so that the I& can be easily 
computed from (3.7). 

Now consider the integrals Y & k .  we first write the velocity v' after collision 
as v + s,  obtaining 

s 
s 

(3.9) s = V1-V = 1 2(g'--g), sZ= g2cos2$ 

from the dynamics of a collision. I n  (3.9) 4 is the angle defining the spse-line 
(see figure 1 of I). Substituting from (3.9) into (3.4b), and transforming from 
v, w to  V ,  G as before using (3.5), we obtain 

1 (ux + sx + p-'& + @(pi $- pj ) /pk} '  Gz) 

x exp [ - V 2  - (G - U)2 - pis2 - 2pis. (5 - ui +p-S V 
+ @(pi + pj)/pk}-; G ) ]  G b db de DG DV. (3.10) 

It is clear that  the integration with respect to  V can again be performed as before. 
We find it convenient to express the result in terms of the angles @,Of  made by the 
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vectors g, g' respectively with the axis along v,. From the geometry of the en- 
counter, it is easily shown that the two angles are actually related to each other: 

cos 8' = - cos 8 cos 2 3  + sin 8 sin 2 3  sin E.  (3.1 1 a )  
Also, from (3.9) s, = gg(cos e' - cos 01, (3.11 b )  

recalling that conservation of energy in an encounter between two molecules 
requires that g = g'. 

Using (3.11), the result of integrating (3.10) in V is 

x [% + @(Pi + P j ) / P k l - i  G cos 8 + W j  + P k )  (PPk(Pi  + P,)l-$ 
x G(cos 8' - cos 8)] exp [ - G2( 1 +al cos2 3)  
+ G(a2 cos 8 + a3 cos O')] Gb db ds DG, (3.12) 

where 

"1 = Pi(Pj-Pk)/P, a2 = (Pk(Pi+Pj ) /P)-~(2(~-~u,)P,+Pi( ' -u i )>x,  (3.13) 

a3 = UUPi + Pj)/PFB Pi(% - w x -  I 
Finally, we replace b by csin$ for rigid spheres, and DG by the appropriate 

form in a spherical co-ordinate system in which G is the radius and 8 the polar 
angle. Integration with respect to the azimuthal angle merely yields a factor 2n.  
Equation (3.12) then takes the form 

+ G(a, cos 8 + a3 cos S')] Gz cosm8cosn 6'. (3.15) 

It is actually enough to evaluate Iooo, because the other two integrals in (3.14) 
follow from the relations 

a a 
Ill0 = ~ I O O O ,  1101 = I000. 

2 3 
(3.16) 

It is shown in appendix A that Iooo can also be evaluated in closed form in terms of 
confluent hypergeometric functions. 

Thus using the programme mentioned in I for computing these functions, the 
the coefficient Y can be evaluated from (3.3), (3.7) and (3.14). 

3.2. Evaluation of 2 
The computation of the terms f i i  in the integral (2.7) defining Z has already been 
described in I; to obtain Z itself, it appears necessary to resort to numerical 
integration. The problem can be simplified to some extent by exploiting the 
symmetry of the integrand about the v,-axis to write the volume element DV 

36 Fluid Mech. 36 
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as 2~v,dv,dv,, where v, is the velocity component normal to the v,-axis. The 
range of integration thus becomes the half-plane -a < vx < +a, 0 Q v, < 00. 

Even so, constructing an effective numerical scheme for integration turned out 
to be far from simple. After extensive trials with various well-known schemes, it 
was eventually found that the quadrature procedure suggested by Romberg 
(see e.g. Bauer et al. 1962) was both successful and efficient. The details of the 
programme finally written will be described elsewhere, but as it was crucial to 
the success of the final calculations, it  may be worthwhile to mention some of its 
salient features here. 

First, for some fixed value of vX the range in v, was divided into certain sections 
whose length depended on p. The integral was then evaluated over each section 
carrying out successively finer sub-divisions of the section as dictated by the 
Romberg procedure till the convergence was satisfactory. The number of sections 
was determined by the requirement that the contribution from the last section 
be a prescribed small fraction of an estimate of the total integral (this estimate 
bcing improved if necessary as the computation progressed). After the integration 
with respect to vn was complete at the assumed v,, a similar procedure was em- 
ployed for integration with respect to vx. 

Typically about 35sec were required on a CDC-3600 to evaluate the double 
integral to three significant figures. 

4. Results 
Knowing the coefficients X ,  Y and Z the shock thickness is easily obtained 

from (2.12). We first consider the limiting case of infinite Mach number, for which 
the results are particularly simple and interesting. In the minimum total error 
method, we recover the value for shock thickness found by Oberai (1967) and 
postulated by Sakurai (1957). 

The value of S,, the thickness from the minimum local error solution, can be 
written down analytically (at any Mach number) since both X and Y are known 
in closed form. By a rather lengthy but quite straightforward analysis of the 
expressions derived for these coefficients in 0 3, we can also obtain their asympto- 
tic behaviour as Ml -+ co. It is found that 

(4.1) X M X,,  = $n2,ptyM:(2n)-g [1+ O ( M i 2 ) ]  
from (3.1), and Y M n2,nz(&3z/m3)~Y112[1 + O ( M i 2 ) ]  

(4.2) 

from (3.3), (3.7) and (3.14). Substituting in (2.12a), we obtain 8, a t  Ml = co. 
For y = 8,  the result is 

S,/Z = 8(3/~)-4eg/@(2,#,$)  = 5.691999 (4.3) 

which is exactly the same as the limiting value for S,. 
At finite Mach numbers, the solutions have to be found partly by computation, 

as already described. Table 1 is a summary of the results obtained, which are 
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displayed along with those of some other well-known approximate methods. It 
may be worth recalling that the shock thickness in this table is quoted in terms 
of the hot side mean free path, anticipating an argument that will be spelled out 
in $ 5 .  Of course conversion to the cold side mean free path as the scaling length 
is easily effected for rigid spheres, using the density ratio across the shock. 

H I  

1.2 
1.4 
1.5 
2.0 
2.2 
2.5 
3.0 
4-0 
5.0 

6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
30.0 
a3 

Minimum 
local error 

0.0463 
0.0750 

0.1173 
0.1246 
0.1316 

0-1503 
0.1563 
0.1604 
0.1643 
0.1657 
0.1673 
0.1685 

- 

- 

0.1757 

Minimum 
total error 

0.05 

0.0883 
0.1200 
0.1267 

0.1420 
0.1515 
0-1573 
0.1613 
0.1641 
0.1662 
0.1678 
0.1684 
0.1723 
0.1736 
0.1747 
0.1757 

- 

- 

H = V: 
0.0460 
0.0629 

0.1047 
- 

- 
0.1123 
0.1152 

0.1172 
- 

- 
0.1172 

- 
0.1172 

H = v: 
0.0409 
0.0569 

0-1064 
- 

0.1226 
0.1322 

0.1475 
- 

- 
0.1545 

- 
0.1569 

Navier- 
H = E ; - F ,  Stokes 
0.0555 - 
0.0863 - 
- 0.1003 
- 0.1428 

0.1264 - 
0.1317 - 
0.1379 0.1811 
0,1470 - 
- 0.2058 

0.1586 - 

0.1647 - 
- - 

0.1681 0.2174 

- - 

0.1747 - 
0.1757 - 

TABLE 1. Values of I / &  as computed by various methods. In the figures quoted for the 
minimum total error method, there is an uncertainty of a few units in the last place. 

There are several interesting features in the data of table 1 which call for 
comment. First of all, not only is 8, = 8, in the limit Hl --f co, but the difference 
(8, - Q) is always small; it is less than 2 yo for Nl > 2. From the remark already 
made in 3 2 about the relation between this difference and the accuracy of the 
solutions, we must now conclude that these minimum error solutions must be 
very close to the exact values. (Actual values of the residual error itself will be 
given in $ 6.) Secondly, accepting these values as providing a suitable standard 
of comparison for other approximate solutions, we note that the most popular 
method, which uses v: as the moment function, is also the least satisfactory (of 
the three methods with which comparison is offered in table 1). At Ml = 00, it 
yields a value which is about a third in error. The $-moment results are much 
better at  higher Mach numbers, but rather poorer at lower ones. (The entries in 
the table for these two methods are taken from Mott-Smith (1951).) 

We have also given in table 1 results obtained with Fl-&, as the moment 
function. This choice is equivalent to an application of the restricted variational 
technique of Rosen (1954). As the numerical results presented by Rosen do not 
go beyond a Mach number of 4.0, we made independent calculations which 
incidentally revealed slight errors in Rosen’s computations. (Thus at  Ml = 1-2, 
his results are too high by about 4 yo.) The calculations at  high Mach numbers 

36-2 
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brought to light the remarkable fact that the (Fl - F,) moment solutions are 
always very good approximations, and at M, = co are identical with the minimum 
error solution. The last statement is relatively easily confirmed by an asymptotic 
analysis of Rosen's results, which also yields (4.3) in the limit M, --f 03. 

Finally, for the sake of completeness, we have included in the table Navier- 
Stokes values for the shock-thickness at  a few Mach numbers (taken from some 
unpublished computations by Chahine & Narasimha). Making the reasonable 
assumption that the Navier-Stokes theory is valid near M, = 1.5, it is interesting 
to note how close the present minimum error solutions are even at these low 
Mach numbers.? 

5. Discussion 
It remains to consider the significance of our results for a real gas, whose mole- 

cules can rarely be represented as hard spheres. 
It is well-known, from both continuum and gas-kinetic theories of shock 

structure, that the ratio &/A,, i.e. the shock-thickness expressed in terms of the 
Maxwell mean free path on the cold side, is very sensitive to the intermolecular 
potential (or, equivalently, to the viscosity-temperature law for the gas) at  
high Mach numbers. (The limiting values at  a, = co go all the way from a finite 
value to infinity.) From time to time, it has been suggested that the choice of 
a more appropriate length scale will suppress this sensitivity. For example, 
Liepmann et al. (1962) have shown that the use of the Maxwell mean free 
path A, at  the sonic point inside the shock is particularly appropriate for the 
Navier-Stokes solutions; Muckenfuss (1962) has proposed the value (say A,) 
at the point where v = 4, from a study of Mott-Smith type solutions. The dis- 
advantage with these scales is that A has to be known at an interior point of 
the shock where the state of the gas (in a real shock) cannot be determined with 
certainty, because experiments do not provide complete information and the 
theories are not exact. 

We propose here that the use of A, (the Maxwell mean free path on the hot side 
of the shock) as a scaling length has many advantages. (For a rigid sphere gas 
A2 = 1.) For weak shocks the mean free path is of the same order everywhere in 
the shock, and so one choice is nearly as good as another. Therefore, the merit of 
the proposal must be judged largely by its usefulness for strong shocks. Now as 
N, --f co, it is easily shown that S/A, always tends to finite non-zero values in 
both continuum and kinetic theories. In  fact, this is a simple consequence of the 
success of the other scales mentioned earlier. Consider first the kinetic theories. 
Muckenfuss (1962) has shown that as M, + 00, SIR, = O(MZ,.-l), where (LJ is the 
index in the viscosity law ,u N T". But as 

A N  ,u(T)/nT* (5.1) 
we see that h,/A, = O(M:-2"), and hence SlA, = O(1) for all w .  

t We note here that the Monte-Carlo calculations of Bird (1967) give, at  M I  = 10.0, 
the value Z/S = 0.078 0.004, which is considerably lower than the present values as well 
as the other figures quoted in table 1. The reasons for this rather large discrepancy may 
partly lie in the sampling procedures adopted by Bird. 
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These order-of-magnitude statements are quite general, and do not depend on 
the particular choice of moment function that Muckenfuss actually made in 
evaluating the v of (2.4). The crux of the matter is simply that where the density 
slope is maximum (i.e. at  v = + for the solution (2.10)), the temperature 
To = O(T,). What is even more interesting is that To is very nearly equal to T,: 
working out the relation between T and v for the bimodal ansatz (2.4), we get 

where n21 = n2/n1, T,, = T2/Tl. 

Putting v = 4 and taking the limit M, -+ m, we can show from (5.2) that 

__ To w (Y+1)(3Y+1). 
T2 6Y2 

> 

for y = 5, TOIT, is ++. 
Now if we define an effective diameter for a molecule which is a cent,re of force 

by equating its Maxwell mean free path with that for a rigid sphere gas, we will 
of course find that this diameter depends in general on the temperature. But 
then the closeness of To to T, noted above leads to the interesting conclusion that 
near and beyond v = 4, the temperature changes so little that the molecules do 
indeed behave very nearly like rigid spheres, with a diameter corresponding to 
their effective cross-section at the temperature on the hot side. This strongly 
suggests that A, is the appropriate length scale for the density profile. 

Although we are not here directly concerned with Navier-Stokes solutions, 
it  may not be out-of-place to point out that these also show that SlA, = O( 1) as 
MI -+ m, irrespective of w .  Indeed this has been recognized by Lighthill (1956), 
who gives interesting bounds for the Navier-Stokes shock thickness in terms of 
essentially the same length scale as our A,. It also follows from the result of 
Liepmann et al. (1962) mentioned above, for T* = O(T,) and hence A, = O ( h 2 ) .  
These statements are particularly easy to verify for a gas with a Prandtl number 
of 2, for which the stagnation enthalpy is constant across the shock and the 
temperature is easily calculated from the velocity. We find then that 

T* = T,(Y + 1 P Y  

as M, + 00, and for y = $ the factor is 0-8: again T* is quite close to T,. 
The choice of A, as the scaling length has the advantage that there is no un- 

certainty about the state of the gas where it is to be evaluated. Finally, we may 
mention that work on the BGK model (Ananthasayanam & Narasimha 1968) has 
also demonstrated the superiority of A, as the scale for shock thickness. 

Following these arguments, we make a comparison, in figure 2, of the present 
calculations with the measurements made in argon by Russell (1965), Camac 
(1965) and Linzer & Hornig (1963). The experimental data are invariably given 
in terms of A,, and have been reduced to A, assuming w = 0.816, which is the 
commonly accepted value for argon. However, there is some uncertainty regard- 
ing w ,  and if we insist on a viscosity law of the type ,u - Tw, one should probably 
take w as a weak function of the temperature. The point, however, is that even 
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if w were somewhat different, the theoretical predictions in figure 2 would not be 
materially altered; see for example the small range in which the vz-moment 
results lie even for different values of w ,  showing definitely that the vz-moment 
calculations do not agree with experiment. On the other hand, there is excellent 
agreement between the measurements and the minimum error solutions found 
here. 

I 1 

0 5 

M I -  1 
10 

FIGURE 2. Maximum density-slope shock thickness in argon; - ~ - , WE, moment values 
for w = 0.816; A ,  same for (L, = 0.5; - , minimum total error solution. Hatched areas 
represent experimental data; L & H, Linzer & Hornig (1963); C, Camac (1965); R, Russell 
(1965). 

6. Conclusions 
Although the closeness of the results obtained by the two minimum error 

methods indicates that their accuracy is high, the fact that the results tend to  
coincide as MI -+ 00 does not imply that we have an exact solution. The reason is 
that the error E of the sohtions does not tend to zero. As all three coefficients 
X ,  Y and 2 in (2.6) have been obtained by us, detailed results for E(v) also become 
available, but it is enough to consider the minimum value of E at v = $. Calling 
this Emin, we obtain from (2.6), (2.8) and ( 2 . 1 2 ~ )  

As Ml -+ 00 we have S, + S,, but from (4.1) X -+ co like M2,, with the result that 
Emin remains non-zero and finite. Figure 3 shows computed values of E m i n  as a 
function of Ml. 

It follows that the value of shock thickness that Sakurai postulated is not the 
exact value, and a fortiori that the bimodal distribution is not an exact (uni- 
formly valid) solution of the Boltzmann equation. It does represent a ‘solution’ 
in what was called the inner limit in I, i.e. near the supersonic peak in velocity 
space. But this is not enough for obtaining the moments accurately, as the outer 
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limit makes contributions of the same order. It is shown in appendix B, by an 
asymptotic analysis of e, that the Mott-Smith ansatz is indeed not a solution of 
the Boltzmann equation in the outer limit even when Ml + 00. 

It must, however, be emphasised that in spite of this, the present work shows 
that the bimodal ansatz can lead to quite accurate estimates of the shock thick- 
ness, provided the proper criteria are employed to determine the free parameter. 
It will be generally agreed that minimum error methods are the most rational 

0 5 10 

MI- 1 
FIGURE 3. Non-dimensional minimum error a t  v = 4. The curve is drawn through the 

values obtained from the computations, denoted by open circles. 

when feasible, and hence the minimum ‘local’ error criterion, possessing the 
further advantage of simplicity, invites widespread use. Among the moment 
methods, the power functions v; yield rather divergent results and are generally 
unsatisfactory. But Fl - F, appears to be a very good choice, and the reason for 
its success is almost certainly that it weights properly those regions in velocity 
space that contribute appreciably to the number density, as discussed in some 
detail by Ananthasayanam & Narasimha (1968) for solutions of the BGK model 
equation. 

From the data presented in figure 2, we may conclude that the Navier-Stokes 
equations are satisfactory up to Nl 5 2, and beyond this the shock thickness is 
nearly a constant multiple of the downstream Maxwell mean free path, decreasing 
to an asymptotic value of about 5.711, at large Mach numbers. Incidentally as 
all available evidence (both theoretical and experimental) indicates that A, is 
the most appropriate scaling length for the density-slope shock thickness, we 
would like to suggest here that, in future, experimental results should if possible 
be quoted in terms of A,. Although the properties of the gas at  the high tempera- 
tures usually encountered on the hot side of the shock may not be known as well 
as one might desire, it may be possible to obtain A, as a part of the experiment 
itself; for example, in beam-attenuation experiments, data on the attenuation 
on the hot side might provide a direct measure of A,. 
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Appendix A 
We evaluate here certain integrals encountered in Q 3. First consider I-(U), 

1,(U), defined by (3.8). 
The integration with respect to V yields a factor d. For the integration in G,  

choose spherical polar co-ordinates (G, 8, $) with U as axis. The exponential in 
(3.8) then contains a term G .  U = GU cos 0, and we use the expansion in spherical 
harmonics 00 

exp(-2GUcos8) = C (2n+1)P,(cos8)in(2GU) (A 1) 
n = O  

as in I. Termwise integration in 8 is easily carried out remembering that 

/ on~n(cos  0 )  sin 8 do = 2 if n = o 
= O  if n+O; 

and integration in r# gives a factor of 277. We are therefore left with 

Using (2.13) of I, this becomes 

Il(U) = 2n% e-ua @(2, $y U2). (A 3) 

12(U) = %1-3 3 e-ua U@(3,5, U2). (A 4) 

I,( U) can be evaluated using exactly similar methods 

Next we study the integrals A,,, defined by (3.15). As pointed out in the 
text, it  is enough to evaluate 

+ G(a, cos 8 + a3 cos S') ] .  (A 5) 

Substituting here for cos 8' from (3.11 a) ,  the integrations in E and 8 are easily 
performed (e.g. Watson 1944, p. 51), giving 

Putting this result into (A5), we see that the integration in G can again be 
performed using (2.13) of I so that (A5) becomes 
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If we write the argument of CD here as t ,  the above integral is found to transform to 

where t1 = $(a2 - a3)'/( 1 +a,), t ,  = +(a2 + a 3 f 2 .  

Integrating (A 6) by using the series expansion for CD we obtain the final result 

4n 
I000 = a a 8, &(a2 + @{l, 8, $(a2-a3)2 / (1  + 

2 3 + + 
(A 7) 

Appendix B 
We make here a brief analysis of the inner and outer limit of the error function e, 

defined by (2.5a). The two limiting processes, as well as the corresponding 
variables in velocity space, have already been described in I. 

In the inner limit v, M ul, and hence the first term in (2.5a) is -uIFlvf  to the 
lowest order as M, --f co. By an examination of the result given in I, we see that 
the lowest order contribution to 9 in the inner limit is due to F19[F2(ul)], where 
the loss operator on F, is evaluated at  v = u,. It follows that e is zero in the inner 
limit if 

This is essentially Sakurai's result. As Fl becomes a delta function in the limit 
M, + co, we can look upon the result as being obtained by a balance of delta 
functions on either side of the Boltzmann equation. 

If (B 1) is worked out using the results of I for 9 ( F 2 )  we find that the corre- 
sponding shock thickness is the same as that given by (4.3). 

To see that (2.4) does not provide an exact solution of the Boltzmann equation 
uniformly in velocity space, it  is enough to consider the behaviour of the outer 
limit of e near the origin in velocity space. The first term in (2.5a) is now asympto- 
tically v,F!(O) v', and is linear in v,. But from the analysis in I of the outer limit 
of the $$?, it can be easily shown that for v, + 0 the collision term does not tend 
to zero like v,. Hence e cannot vanish for all velocities. 
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